If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50=-16x^2+112x
We move all terms to the left:
50-(-16x^2+112x)=0
We get rid of parentheses
16x^2-112x+50=0
a = 16; b = -112; c = +50;
Δ = b2-4ac
Δ = -1122-4·16·50
Δ = 9344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9344}=\sqrt{64*146}=\sqrt{64}*\sqrt{146}=8\sqrt{146}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-112)-8\sqrt{146}}{2*16}=\frac{112-8\sqrt{146}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-112)+8\sqrt{146}}{2*16}=\frac{112+8\sqrt{146}}{32} $
| 7x+2=4×+23 | | 0.57x=12 | | 5/3x-4=7/3x-5 | | (3x+15)+(14x-9)=90 | | 7x+5=3x+13+2x | | -9(t+2)=4(t=15) | | 34-3x=4 | | 5x+7=-3x+23 | | -14-14h=-15h+18-h | | (2+2x)+62=180 | | 3x-8x+5=30 | | -30/6=x | | 7x+9-3x=41 | | 4x-10+7x-8=90 | | 2s-6=s+14 | | 10(h+1)=-4=76 | | 6x+16=-19 | | 5.3=-7+x | | 6b-11=49 | | 39x=12(x+4) | | -8+m/4=3 | | -3(p-4)=3(p+7) | | -8f=-9f+13 | | x+2x+23+x=183 | | -3(x+2)=-38 | | 5(w-2)=7w+2-4(-4w-1) | | (3/5)x=30 | | 7x+-3=4x+3 | | 39x=12x(x+4) | | 4(y+6)-6y=38 | | 3t+4=12+3t= | | 9x-24-6x-5=x+9 |